In this paper we discuss the optimal control of a quasilinear parabolic state equation. Its form is leaned on the kind of problems arising for example when controlling the anisotropic Allen-Cahn equation as a model for crystal growth. Motivated by this application we consider the state equation as a result of a gradient flow of an energy functional. The quasilinear term is strongly monotone and obeys a certain growth condition. The state equation is discretized implicitly in time with piecewise constant functions. The existence of the control-to-state operator and its Lipschitz-continuity is shown for the time discretized as well as for the time continuous problem. Latter is based on the convergence proof of the discretized solutions. Finally we present for both the existence of global minimizers. When the target function is given over the whole time horizon also convergence of a subsequence of time discrete optimal controls to a global minimizer of the time continuous problem can be shown. Our results hold in arbitrary space dimensions.
翻译:在本文中,我们讨论准线性抛物线状态方程式的最佳控制。 其形式集中在控制厌食性艾伦- 卡恩等方程式作为晶体生长模型时出现的问题类型上。 受此应用的驱动, 我们将状态方程式视为能源功能的梯度流的结果。 准线性术语是强烈的单质, 并符合一定的增长条件。 状态方程式在时间上以片断的恒定函数默认地分解。 控制到国家的操作员及其Lipschitz- continity的存在在时间分解和时间持续问题中都显示出来。 分解后方程式是基于分解性解决方案的趋同证据。 最后, 我们为全球最小化器的存在提供了两种结果。 当目标函数在整个时间范围被赋予时, 离式最佳控制序列与时间持续问题的全球最小化器的子序列也可以被显示为一致。 我们的结果将任意的空间维系于空间层面 。