Machine learning models can reach high performance on benchmark natural language processing (NLP) datasets but fail in more challenging settings. We study this issue when a pre-trained model learns dataset artifacts in natural language inference (NLI), the topic of studying the logical relationship between a pair of text sequences. We provide a variety of techniques for analyzing and locating dataset artifacts inside the crowdsourced Stanford Natural Language Inference (SNLI) corpus. We study the stylistic pattern of dataset artifacts in the SNLI. To mitigate dataset artifacts, we employ a unique multi-scale data augmentation technique with two distinct frameworks: a behavioral testing checklist at the sentence level and lexical synonym criteria at the word level. Specifically, our combination method enhances our model's resistance to perturbation testing, enabling it to continuously outperform the pre-trained baseline.


翻译:机器学习模型在基准自然语言处理数据集上可能表现出色,但在更具挑战性的设置下会失败。我们研究了一个预训练模型在自然语言推理 (NLI) 中学习数据集伪迹的问题,NLI 研究的是文本序列之间的逻辑关系。我们提供了各种技术来分析和定位斯坦福自然语言推理(SNLI)语料库中的数据集伪迹。我们研究了 SNLI 中数据集伪迹的风格模式。为了减少数据集伪迹,我们采用了独特的多尺度数据增强技术,其中包含两个不同的框架:句子级别的行为测试清单和单词级别的词汇同义标准。具体而言,我们的组合方法增强了我们的模型对扰动测试的抵抗力,使其始终优于预训练基线模型。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员