In the blind deconvolution problem, we observe the convolution of an unknown filter and unknown signal and attempt to reconstruct the filter and signal. The problem seems impossible in general, since there are seemingly many more unknowns than knowns . Nevertheless, this problem arises in many application fields; and empirically, some of these fields have had success using heuristic methods -- even economically very important ones, in wireless communications and oil exploration. Today's fashionable heuristic formulations pose non-convex optimization problems which are then attacked heuristically as well. The fact that blind deconvolution can be solved under some repeatable and naturally-occurring circumstances poses a theoretical puzzle. To bridge the gulf between reported successes and theory's limited understanding, we exhibit a convex optimization problem that -- assuming signal sparsity -- can convert a crude approximation to the true filter into a high-accuracy recovery of the true filter. Our proposed formulation is based on L1 minimization of inverse filter outputs. We give sharp guarantees on performance of the minimizer assuming sparsity of signal, showing that our proposal precisely recovers the true inverse filter, up to shift and rescaling. There is a sparsity/initial accuracy tradeoff: the less accurate the initial approximation, the greater we rely on sparsity to enable exact recovery. To our knowledge this is the first reported tradeoff of this kind. We consider it surprising that this tradeoff is independent of dimension. We also develop finite-$N$ guarantees, for highly accurate reconstruction under $N\geq O(k \log(k) )$ with high probability. We further show stable approximation when the true inverse filter is infinitely long and extend our guarantees to the case where the observations are contaminated by stochastic or adversarial noise.


翻译:在盲目解剖问题中,我们观察到一个未知过滤器和未知信号的混凝土,并试图重建过滤器和信号。问题一般似乎不可能解决,因为似乎有许多比已知的未知物。然而,这个问题在许多应用领域都出现。尽管如此,从经验上看,其中一些领域成功地使用了杂质方法 -- -- 即使是经济上非常重要的方法,无线通信和石油勘探领域也是如此。今天的时尚超潮化配方带来了非混凝土优化问题,随后又受到过度打击。在一些可重复和自然发生的环境下,盲调变异能可以解决,这在理论上是一个谜题。为了弥合所报告的成功和理论有限理解之间的鸿沟,我们展示了一个混凝土优化问题 -- -- 假设信号的不稳定性 -- -- 可以将粗略的近似转化为真实过滤器的高度精确恢复。我们提议的配方基于L1 将真实的过滤器产出降到最低程度。我们给最小化的信号的性保证是进一步缩压,表明我们的提案在初始过滤器中准确度恢复了准确度的概率, 也显示我们这一精确度的精确度的精确度的精确度。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2017年11月3日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2017年11月3日
Top
微信扫码咨询专知VIP会员