Dictionary Learning (DL) is one of the leading sparsity promoting techniques in the context of image classification, where the "dictionary" matrix D of images and the sparse matrix X are determined so as to represent a redundant image dataset. The resulting constrained optimization problem is nonconvex and non-smooth, providing several computational challenges for its solution. To preserve multidimensional data features, various tensor DL formulations have been introduced, adding to the problem complexity. We propose a new tensor formulation of the DL problem using a Tensor-Train decomposition of the multi-dimensional dictionary, together with a new alternating algorithm for its solution. The new method belongs to the Proximal Alternating Linearized Minimization (PALM) algorithmic family, with the inclusion of second order information to enhance efficiency. We discuss a rigorous convergence analysis, and report on the new method performance on the image classification of several benchmark datasets.


翻译:词典学习(DL)是图像分类方面的主要促进技术之一,在图像分类方面,确定图像的“字典”矩阵D和稀少的矩阵X是为了代表一个多余的图像数据集。由此产生的限制优化问题是非对流和非对流的,为解决方案提供了几种计算挑战。为了维护多维数据特征,引入了各种高压DL配方,增加了问题的复杂性。我们提议采用多维字典的Tensor-Train分解法,并采用新的交替算法,对DL问题进行新的分解。新的方法属于Proximal Alternational 线性最小化(PALM)算法系,包括二顺序信息以提高效率。我们讨论严格的趋同分析,并报告几个基准数据集图像分类的新方法表现。

0
下载
关闭预览

相关内容

稀疏表达的效果好坏和用的字典有着密切的关系。字典分两类,一种是预先给定的分析字典,比如小波基、DCT等,另一种则是针对特定数据集学习出特定的字典。这种学出来的字典能大大提升在特定数据集的效果。
专知会员服务
14+阅读 · 2021年5月21日
专知会员服务
53+阅读 · 2020年3月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月28日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员