To analyze the abundance of multidimensional data, tensor-based frameworks have been developed. Traditionally, the matrix singular value decomposition (SVD) is used to extract the most dominant features from a matrix containing the vectorized data. While the SVD is highly useful for data that can be appropriately represented as a matrix, this step of vectorization causes us to lose the high-dimensional relationships intrinsic to the data. To facilitate efficient multidimensional feature extraction, we utilize a projection-based classification algorithm using the t-SVDM, a tensor analog of the matrix SVD. Our work extends the t-SVDM framework and the classification algorithm, both initially proposed for tensors of order 3, to any number of dimensions. We then apply this algorithm to a classification task using the StarPlus fMRI dataset. Our numerical experiments demonstrate that there exists a superior tensor-based approach to fMRI classification than the best possible equivalent matrix-based approach. Our results illustrate the advantages of our chosen tensor framework, provide insight into beneficial choices of parameters, and could be further developed for classification of more complex imaging data. We provide our Python implementation at https://github.com/elizabethnewman/tensor-fmri.
翻译:为了分析多维数据的丰度,已经开发了基于ARD的框架。传统上,矩阵单值分解法(SVD)被用于从含有矢量数据的矩阵中提取最主要特征。虽然SVD对于能够以矩阵形式适当代表的数据非常有用,但这一矢量化步骤使我们失去了数据所固有的高维关系。为了便于高效的多维特征提取,我们使用基于投影的分类算法,使用T-SVDM(矩阵SVD的高模模拟)。我们的工作将T-SVDM(SVD)框架和分类算法(最初为顺序3的10个提议)扩展至任何层面。我们随后将这一算法应用于使用StarPlus fMRI数据集的分类任务。我们的数字实验表明,在FMRI分类方面存在着一种优于最可能对应的矩阵方法的基于高压率方法。我们的成果说明了我们所选择的温度框架的优势,提供了对有利参数选择的洞察度,并且可以进一步开发用于更复杂的图像数据的分类。我们提供了在 http://mfrmus/stimmus.