Nonlinear time fractional partial differential equations are widely used in modeling and simulations. In many applications, there are high contrast changes in media properties. For solving these problems, one often uses coarse spatial grid for spatial resolution. For temporal discretization, implicit methods are often used. For implicit methods, though the time step can be relatively large, the equations are difficult to compute due to the nonlinearity and the fact that one deals with large-scale systems. On the other hand, the discrete system in explicit methods are easier to compute but it requires small time steps. In this work, we propose the partially explicit scheme following earlier works on developing partially explicit methods for nonlinear diffusion equations. In this scheme, the diffusion term is treated partially explicitly and the reaction term is treated fully explicitly. With the appropriate construction of spaces and stability analysis, we find that the required time step in our proposed scheme scales as the coarse mesh size, which creates a great saving in computing. The main novelty of this work is the extension of our earlier works for diffusion equations to time fractional diffusion equations. For the case of fractional diffusion equations, the constraints on time steps are more severe and the proposed methods alleviate this since the time step in partially explicit method scales as the coarse mesh size. We present stability results. Numerical results are presented where we compare our proposed partially explicit methods with a fully implicit approach. We show that our proposed approach provides similar results, while treating many degrees of freedom in nonlinear terms explicitly.
翻译:非线性时间部分差异方程式广泛用于建模和模拟。在许多应用中,媒体特性的对比度变化很大。为了解决这些问题,人们往往使用粗略的空间网格进行空间分辨率。对于时间分解,往往使用隐含的方法。对于隐含的方法,虽然时间步骤可能相对较大,但由于时间步骤与大型系统的关系,因此难以计算等式。另一方面,以明确方法计算的离散系统比较容易计算,但需要小时间步骤。在这项工作中,我们建议了早先为非线性扩散方程式开发部分明确方法后的部分明确度方案。在这个方法中,扩散术语得到部分明确的处理,反应术语得到完全明确的处理。在适当的空间和稳定性分析中,我们发现我们拟议方案规模所需的时间步骤是粗略的,这在计算方面有很大的节省。我们所提议的许多新做法是,我们早先的传播方程式扩展到时间分数扩散方程式的延伸。在这种分解法中,对于分解法的扩展术语进行了部分明确处理,而在这种分解式扩散方程式中,我们提议的分解式的分解的分解的分解法则以较明确的方式显示我们目前提出的分级的分级的分级步骤的结果。我们提出的分解的分级的分级的分级的分级的分级法,我们提出的分级的分级的分级的分级的分级的分级的分级法则显示为分级法是较的分级法。我们提出的分级法的分级法的分级法是较的分级法。我们提出的分级法的分级法的分级法的分级的分级法的分级法的分级的分级的分级的分级的分级法的分级法的分级法的分级法的分级法的分级法的分级法的分级法的分级法的分级法的分级法的分级法的分级法的分级法的分级法的分级法。