This paper studies a Group Influence with Minimum cost which aims to find a seed set with smallest cost that can influence all target groups, where each user is associated with a cost and a group is influenced if the total score of the influenced users belonging to the group is at least a certain threshold. As the group-influence function is neither submodular nor supermodular, theoretical bounds on the quality of solutions returned by the well-known greedy approach may not be guaranteed. To address this challenge, we propose a bi-criteria polynomial-time approximation algorithm with high certainty. At the heart of the algorithm is a novel group reachable reverse sample concept, which helps speed up the estimation of the group influence function. Finally, extensive experiments conducted on real social networks show that our proposed algorithm outperform the state-of-the-art algorithms in terms of the objective value and the running time.
翻译:本文研究一个具有最低成本的集团影响,目的是找到一个可以影响所有目标群体的成本最小的种子组,每个用户都与成本有关,如果属于该组的受影响的用户的总分至少是一个临界值,一个群体就会受到影响。由于该组影响功能既不是亚模块,也不是超模块,因此无法保证众所周知的贪婪方法所返回的解决方案的质量的理论界限。为了应对这一挑战,我们建议采用双标准多米亚时近似算法,并具有高度确定性。在算法的核心,是一种新颖的集团可实现的反向抽样概念,有助于加快对集团影响函数的估计。最后,在实际社会网络上进行的广泛实验表明,我们提议的算法在客观价值和运行时间方面超过了最新算法。