We study $L_2$-approximation problems $\text{APP}_d$ in the worst case setting in the weighted Korobov spaces $H_{d,\a,{\bm \ga}}$ with parameter sequences ${\bm \ga}=\{\ga_j\}$ and $\a=\{\az_j\}$ of positive real numbers $1\ge \ga_1\ge \ga_2\ge \cdots\ge 0$ and $\frac1 2<\az_1\le \az_2\le \cdots$. We consider the minimal worst case error $e(n,\text{APP}_d)$ of algorithms that use $n$ arbitrary continuous linear functionals with $d$ variables. We study polynomial convergence of the minimal worst case error, which means that $e(n,\text{APP}_d)$ converges to zero polynomially fast with increasing $n$. We recall the notions of polynomial, strongly polynomial, weak and $(t_1,t_2)$-weak tractability. In particular, polynomial tractability means that we need a polynomial number of arbitrary continuous linear functionals in $d$ and $\va^{-1}$ with the accuracy $\va$ of the approximation. We obtain that the matching necessary and sufficient condition on the sequences ${\bm \ga}$ and $\a$ for strongly polynomial tractability or polynomial tractability is $$\dz:=\liminf_{j\to\infty}\frac{\ln \ga_j^{-1}}{\ln j}>0,$$ and the exponent of strongly polynomial tractability is $$p^{\text{str}}=2\max\big\{\frac 1 \dz, \frac 1 {2\az_1}\big\}.$$


翻译:暂无翻译

0
下载
关闭预览

相关内容

RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员