A periodic temporal graph $\mathcal{G}=(G_0, G_1, \dots, G_{p-1})^*$ is an infinite periodic sequence of graphs $G_i=(V,E_i)$ where $G=(V,\cup_i E_i)$ is called the footprint. Recently, the arena where the Cops and Robber game is played has been extended from a graph to a periodic graph; in this case, the copnumber is also the minimum number of cops sufficient for capturing the robber. We study the connections and distinctions between the copnumber $c(\mathcal{G})$ of a periodic graph $\mathcal{G}$ and the copnumber $c(G)$ of its footprint $G$ and establish several facts. For instance, we show that the smallest periodic graph with $c(\mathcal{G}) = 3$ has at most $8$ nodes; in contrast, the smallest graph $G$ with $c(G) = 3$ has $10$ nodes. We push this investigation by generating multiple examples showing how the copnumbers of a periodic graph $\mathcal{G}$, the subgraphs $G_i$ and its footprint $G$ can be loosely tied. Based on these results, we derive upper bounds on the copnumber of a periodic graph from properties of its footprint such as its treewidth.
翻译:暂无翻译