There is enormous growth in various fields of research. This development is accompanied by new problems. To solve these problems efficiently and in an optimized manner, algorithms are created and described by researchers in the scientific literature. Scientific algorithms are vital for understanding and reusing existing work in numerous domains. However, algorithms are generally challenging to find. Also, the comparison among similar algorithms is difficult because of the disconnected documentation. Information about algorithms is mostly present in websites, code comments, and so on. There is an absence of structured metadata to portray algorithms. As a result, sometimes redundant or similar algorithms are published, and the researchers build them from scratch instead of reusing or expanding upon the already existing algorithm. In this paper, we introduce an approach for automatically developing a knowledge graph (KG) for algorithmic problems from unstructured data. Because it captures information more clearly and extensively, an algorithm KG will give additional context and explainability to the algorithm metadata.
翻译:在各个研究领域都有巨大的增长。 这一发展伴随着新的问题。 为了以最优化的方式有效地解决这些问题, 科学文献中的研究人员创造和描述算法。 科学算法对于理解和再利用许多领域的现有工作至关重要。 然而, 算法一般是难以找到的。 此外, 由于文件脱节, 很难比较类似的算法。 有关算法的信息大多出现在网站、 代码评论等。 缺乏结构化的元数据来描述算法。 结果, 有时会公布多余或类似的算法, 研究人员从零开始而不是重新使用或扩展现有的算法, 从而建立算法。 在本文中, 我们引入了一种方法, 自动开发一个知识图( KG), 解决来自非结构数据中的算法问题。 由于它能更清楚和广泛地收集信息, 算法KG将给算法元带来更多背景和解释。