In this paper, we propose a framework for fast trajectory planning for unmanned aerial vehicles (UAVs). Our framework is reformulated from an existing bilevel optimization, in which the lower-level problem solves for the optimal trajectory with a fixed time allocation, whereas the upper-level problem updates the time allocation using analytical gradients. The lower-level problem incorporates the safety-set constraints (in the form of inequality constraints) and is cast as a convex quadratic program (QP). Our formulation modifies the lower-level QP by excluding the inequality constraints for the safety sets, which significantly reduces the computation time. The safety-set constraints are moved to the upper-level problem, where the feasible waypoints are updated together with the time allocation using analytical gradients enabled by the OptNet. We validate our approach in simulations, where our method's computation time scales linearly with respect to the number of safety sets, in contrast to the state-of-the-art that scales exponentially.
翻译:在本文中,我们提出了一个无人驾驶航空器快速轨迹规划框架。我们的框架从现有的双级优化中重新制定,在双级优化中,较低层次的问题通过固定时间分配解决最佳轨迹,而较高层次的问题则利用分析梯度更新时间分配。较低层次的问题包括了安全设置的制约因素(以不平等制约的形式),并被作为一个锥形四面形程序(QP)推出。我们的提法通过排除安全套的不平等限制来改变较低层次的QP,这大大缩短了计算时间。安全套位的限制被移到了较高层次的问题,其中可行的路径点与使用OptNet 促成的分析梯度进行的时间分配一起更新。我们在模拟中验证了我们的方法,即我们的方法对安全套数的计算时间比重是直线的,而这一比重是指数的状态。