We propose a keypoint-based object-level SLAM framework that can provide globally consistent 6DoF pose estimates for symmetric and asymmetric objects alike. To the best of our knowledge, our system is among the first to utilize the camera pose information from SLAM to provide prior knowledge for tracking keypoints on symmetric objects -- ensuring that new measurements are consistent with the current 3D scene. Moreover, our semantic keypoint network is trained to predict the Gaussian covariance for the keypoints that captures the true error of the prediction, and thus is not only useful as a weight for the residuals in the system's optimization problems, but also as a means to detect harmful statistical outliers without choosing a manual threshold. Experiments show that our method provides competitive performance to the state of the art in 6DoF object pose estimation, and at a real-time speed. Our code, pre-trained models, and keypoint labels are available https://github.com/rpng/suo_slam.
翻译:我们建议了一个基于关键点的SLAM目标级别框架, 能够提供全球一致的 6DoF 对对称和不对称天体的估算。 据我们所知, 我们的系统是最早使用相机的系统之一, 提供来自SLAM的信息, 以提供跟踪对称天体关键点的事先知识, 确保新的测量与当前的 3D 场景相一致。 此外, 我们的语义关键点网络受过培训, 以预测测量正确预测错误的关键点的高斯式共变, 因此不仅作为系统优化问题残留物的权重有用, 而且作为在不选择手动阈值的情况下探测有害统计外部点的手段。 实验显示, 我们的方法为 6DoF 对象的艺术状态提供了竞争性性能, 并实时进行估计 。 我们的代码、 预先训练的模型和关键点标签都可用 https://github.com/ rpng/suo_slam 。