The discovery of spatio-temporal dependencies within urban road networks that cause Recurrent Congestion (RC) patterns is crucial for numerous real-world applications, including urban planning and scheduling of public transportation services. While most existing studies investigate temporal patterns of RC phenomena, the influence of the road network topology on RC is often overlooked. This article proposes the ST-Discovery algorithm, a novel unsupervised spatio-temporal data mining algorithm that facilitates the effective data-driven discovery of RC dependencies induced by the road network topology using real-world traffic data. We factor out regularly reoccurring traffic phenomena, such as rush hours, mainly induced by the daytime, by modelling and systematically exploiting temporal traffic load outliers. We present an algorithm that first constructs connected subgraphs of the road network based on the traffic speed outliers. Second, the algorithm identifies pairs of subgraphs that indicate spatio-temporal correlations in their traffic load behaviour to identify topological dependencies within the road network. Finally, we rank the identified subgraph pairs based on the dependency score determined by our algorithm. Our experimental results demonstrate that ST-Discovery can effectively reveal topological dependencies in urban road networks.
翻译:在城市道路网络中发现时空依赖性,造成经常的拥挤(RC)模式,这是许多现实应用的关键,包括城市规划和公共交通服务的时间安排。虽然大多数现有研究调查了RC现象的时间模式,但道路网络地形对RC的影响往往被忽视。本篇文章提出了ST-发现算法,这是一个新的未经监督的时空数据挖掘算法,有助于利用现实世界交通数据对公路网络地形学引起的驻地协调员依赖性进行有效的数据驱动发现。我们考虑到经常重复的交通现象,例如主要由于白天、建模和系统地利用时空交通负荷外端而引发的高峰时空。我们提出了一种算法,首先根据交通速度外端建立公路网络的连接子图。第二,算法确定了表明其交通负荷行为中存在时空相关性的子图配对,以确定公路网络中的地形依赖性依赖性。最后,我们根据由我们城市网络确定的依赖性分级排列了分数,我们提出了一种算法。我们的实验结果可以有效地显示,在城市轨迹中显示,顶层数据可以显示,顶层数据可以有效地显示。