In this paper, we propose a new horseshoe-type prior hierarchy for adaptively shrinking spline-based functional effects towards a predefined vector space of parametric functions. Instead of shrinking each spline coefficient towards zero, we use an adapted horseshoe prior to control the deviation from the predefined vector space. For this purpose, the modified horseshoe prior is set up with one scale parameter per spline and not one per coefficient. The presented prior allows for a large number of basis functions to capture all kinds of functional effects while the estimated functional effect is prevented from a highly oscillating overfit. We achieve this by integrating a smoothing penalty similar to the random walk prior commonly applied in Bayesian P-spline priors. In a simulation study, we demonstrate the properties of the new prior specification and compare it to other approaches from the literature. Furthermore, we showcase the applicability of the proposed method by estimating the energy consumption in Germany over the course of a day. For inference, we rely on Markov chain Monte Carlo simulations combining Gibbs sampling for the spline coefficients with slice sampling for all scale parameters in the model.
翻译:在本文中,我们提出了一个新的马蹄类先前等级, 用于适应性地缩小基于样板的功能效应, 以适应性地缩小对参数函数的矢量空间。 我们不是将每个样条系数缩到零,而是在控制偏离预定矢量空间之前使用一个适应性的马蹄。 为此, 先前修改的马蹄木设置为每个样条的一个比例参数, 而不是每个系数一个。 之前的介绍允许大量的基础功能功能来捕捉所有类型的功能效应, 而估计的功能效应无法被高度振荡过度利用。 我们为此采用了一种与Bayesian P- spline 之前常用的随机行走相类似的平滑的罚款。 在模拟研究中, 我们演示了以前新规格的特性, 并将其与文献中的其他方法进行比较。 此外, 我们通过估计一天的德国能源消耗量来展示拟议方法的可适用性。 关于推论, 我们依靠Markov 链 Monte Carlo 的模拟, 将 Gibs 采样与模型中所有尺度参数的切片取样结合起来。