Consider a spectrally sparse signal $\boldsymbol{x}$ that consists of $r$ complex sinusoids with or without damping. We study the robust recovery problem for the spectrally sparse signal under the fully observed setting, which is about recovering $\boldsymbol{x}$ and a sparse corruption vector $\boldsymbol{s}$ from their sum $\boldsymbol{z}=\boldsymbol{x}+\boldsymbol{s}$. In this paper, we exploit the low-rank property of the Hankel matrix formed by $\boldsymbol{x}$, and formulate the problem as the robust recovery of a corrupted low-rank Hankel matrix. We develop a highly efficient non-convex algorithm, coined Accelerated Structured Alternating Projections (ASAP). The high computational efficiency and low space complexity of ASAP are achieved by fast computations involving structured matrices, and a subspace projection method for accelerated low-rank approximation. Theoretical recovery guarantee with a linear convergence rate has been established for ASAP, under some mild assumptions on $\boldsymbol{x}$ and $\boldsymbol{s}$. Empirical performance comparisons on both synthetic and real-world data confirm the advantages of ASAP, in terms of computational efficiency and robustness aspects.
翻译:光谱稀疏的信号$\boldsymbol{x} 美元。 在本文中, 我们利用由$\boldsymbol{x}}美元构成的汉克尔矩阵的低位属性。 我们研究在完全观察的环境下光谱稀疏信号的强健恢复问题, 即从他们的总额中回收$\boldsybol{x}x} 美元, 以及一个稀薄的腐败矢量矢量 $\boldsylsol{z{boldsymbol{s}$。 我们研究在完全观察的环境下光谱稀薄信号的强健恢复问题。 我们开发了一个高效的非康量算算算算法, 加速结构化预测 {zz{z{boldsysymallballbol{x} 。 快速计算方法涉及结构化矩阵, 和快速的低位空间预测方法可以实现快速的计算效率和低空间复杂度。 在ASAAP、某种温的模型和合成精度的精确度数据对比中, 在ARCBRB的精确的精确的精确的精确度假设中, 和精确的精确的精确的精确的精确的精确的精确的精确度的精确度的精确度的精确度的精确性能度的精确性能。