In a first part, we present a mathematical analysis of a general methodology of a probabilistic learning inference that allows for estimating a posterior probability model for a stochastic boundary value problem from a prior probability model. The given targets are statistical moments for which the underlying realizations are not available. Under these conditions, the Kullback-Leibler divergence minimum principle is used for estimating the posterior probability measure. A statistical surrogate model of the implicit mapping, which represents the constraints, is introduced. The MCMC generator and the necessary numerical elements are given to facilitate the implementation of the methodology in a parallel computing framework. In a second part, an application is presented to illustrate the proposed theory and is also, as such, a contribution to the three-dimensional stochastic homogenization of heterogeneous linear elastic media in the case of a non-separation of the microscale and macroscale. For the construction of the posterior probability measure by using the probabilistic learning inference, in addition to the constraints defined by given statistical moments of the random effective elasticity tensor, the second-order moment of the random normalized residue of the stochastic partial differential equation has been added as a constraint. This constraint guarantees that the algorithm seeks to bring the statistical moments closer to their targets while preserving a small residue.


翻译:在第一部分,我们对概率学学推论的一般方法进行数学分析,以便从先前的概率模型中估计一个随机边界值问题的后游概率模型,从先前的概率模型中估算出一个随机边界值问题的后游概率模型。给定的目标为没有实现基本结果的统计时刻。在这样的条件下,使用Kullback-LebelLebeller最小差异最小原则来估计后游概率测量值。采用了隐含绘图的统计替代模型,该模型代表了各种限制因素。提供了MCMC 生成器和必要的数字要素,以便利在平行计算框架中实施该方法。在第二部分,提出应用来说明拟议的理论,并因此也是在微观规模和宏观尺度不分离的情况下,对多元线性线性弹性媒体三维同性同质化的贡献。对于利用概率学的推断来构建后游概率测量值的统计替代模型,除了根据随机有效弹性调算的统计时段界定的限制之外,还提出一个应用软件来说明所拟议的理论,因此,因此,对于在微观尺度和宏观比例分析结果中,这种更接近的稳定性的抑制因素是其一个更接近的压后期。

0
下载
关闭预览

相关内容

“后验”是指在考虑与所审查的特定案件有关的相关证据之后。类似地,后验概率分布是未知量的概率分布,视从实验或调查获得的证据为条件,该未知量被视为随机变量。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员