Efforts to improve the adversarial robustness of convolutional neural networks have primarily focused on developing more effective adversarial training methods. In contrast, little attention was devoted to analyzing the role of architectural elements (such as topology, depth, and width) on adversarial robustness. This paper seeks to bridge this gap and present a holistic study on the impact of architectural design on adversarial robustness. We focus on residual networks and consider architecture design at the block level, i.e., topology, kernel size, activation, and normalization, as well as at the network scaling level, i.e., depth and width of each block in the network. In both cases, we first derive insights through systematic ablative experiments. Then we design a robust residual block, dubbed RobustResBlock, and a compound scaling rule, dubbed RobustScaling, to distribute depth and width at the desired FLOP count. Finally, we combine RobustResBlock and RobustScaling and present a portfolio of adversarially robust residual networks, RobustResNets, spanning a broad spectrum of model capacities. Experimental validation across multiple datasets and adversarial attacks demonstrate that RobustResNets consistently outperform both the standard WRNs and other existing robust architectures, achieving state-of-the-art AutoAttack robust accuracy of 61.1% without additional data and 63.7% with 500K external data while being $2\times$ more compact in terms of parameters. Code is available at \url{ https://github.com/zhichao-lu/robust-residual-network}
翻译:改善 convolual 神经网络对抗性强力的努力主要侧重于开发更有效的对抗性培训方法。 相反,我们很少注意分析建筑元素(如地形、深度和宽度)对对抗性强力的作用。 本文试图弥合这一差距,并展示关于建筑设计对对抗性强力影响的全面研究。 我们侧重于剩余网络,并考虑在区块层面的建筑设计,即,表层学、内核大小、激活和正常化,以及网络缩放层面,即网络中每个区块的深度和宽度。 在这两种情况下,我们首先通过系统性的平调实验来了解建筑元素(如地形、深度和宽度)的作用。 然后我们设计一个强大的残余块, 标为 RobustResbustBlock 和复合缩放规则, 在理想的FLOP 计数中分配深度和宽度。 最后,我们将 RobustRestreslock 和robustStalScal化的网络、 RobustResNet 和50-rbal-rubstalalal- sal- sal sal del supal supal supal del del supal supal sal sal sal sal del sal sal del supal del sal del sal sal sal sal sal sal delval sqal del sal del sal del sal del sal del sal del sal del sal sal delpal delpal del sqs sqs sqs sqs sqs sqs sqs sqs sqs sal del sqs sqs sqs sqs sqs sal sal del sal del sal del sal del sal sal sal del sal sal sal sal sal sal sal sals sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal se sal sal sal del sal sal sal se se se se se se se se del sal sal sal