This paper presents an online system that leverages social media data in real time to identify landslide-related information automatically using state-of-the-art artificial intelligence techniques. The designed system can (i) reduce the information overload by eliminating duplicate and irrelevant content, (ii) identify landslide images, (iii) infer geolocation of the images, and (iv) categorize the user type (organization or person) of the account sharing the information. The system was deployed in February 2020 online at https://landslide-aidr.qcri.org/landslide_system.php to monitor live Twitter data stream and has been running continuously since then to provide time-critical information to partners such as British Geological Survey and European Mediterranean Seismological Centre. We trust this system can both contribute to harvesting of global landslide data for further research and support global landslide maps to facilitate emergency response and decision making.
翻译:本文件介绍了一个在线系统,利用社交媒体数据实时利用最新人工智能技术自动识别与滑坡有关的信息,设计该系统可以:(一) 通过消除重复和不相关的内容,减少信息超负荷;(二) 识别滑坡图像;(三) 推断图像的地理位置;(四) 将共享信息的账户的用户类型(组织或个人)分类;该系统于2020年2月在https://landslide-aidr.qcri.org/landslide_system.php上安装,以监测现场推特数据流,并自此一直持续运行,向英国地质调查局和欧洲地中海地震中心等合作伙伴提供时间紧迫的信息。 我们相信,该系统能够帮助收集全球滑坡数据,以便进一步研究和支持全球滑坡地图,以便利应急和决策。