Uncertainty estimation for machine learning models is of high importance in many scenarios such as constructing the confidence intervals for model predictions and detection of out-of-distribution or adversarially generated points. In this work, we show that modifying the sampling distributions for dropout layers in neural networks improves the quality of uncertainty estimation. Our main idea consists of two main steps: computing data-driven correlations between neurons and generating samples, which include maximally diverse neurons. In a series of experiments on simulated and real-world data, we demonstrate that the diversification via determinantal point processes-based sampling achieves state-of-the-art results in uncertainty estimation for regression and classification tasks. An important feature of our approach is that it does not require any modification to the models or training procedures, allowing straightforward application to any deep learning model with dropout layers.
翻译:对机器学习模型的不确定性估计在许多假设情景中非常重要,例如,为模型预测和检测分布范围外或对抗性生成点建立信心间隔。在这项工作中,我们表明,修改神经网络中辍学层的抽样分布提高了不确定性估计的质量。我们的主要想法包括两个主要步骤:计算由数据驱动的神经元与生成样本之间的相互关系,其中包括最多样化的神经元。在一系列模拟和现实世界数据实验中,我们证明,通过基于定点过程的取样实现多样化,在对回归和分类任务进行不确定性估计方面取得了最先进的结果。我们的方法的一个重要特征是,不需要对模型或培训程序作任何修改,从而可以直接应用任何与辍学层有关的深层次学习模式。