Geyser eruption is one of the most popular signature attractions at the Yellowstone National Park. The interdependence of geyser eruptions and impacts of covariates are of interest to researchers in geyser studies. In this paper, we propose a parametric covariate-adjusted recurrent event model for estimating the eruption gap time. We describe a general bivariate recurrent event process, where a bivariate lognormal distribution and a Gumbel copula with different marginal distributions are used to model an interdependent dual-type event system. The maximum likelihood approach is used to estimate model parameters. The proposed method is applied to analyzing the Yellowstone geyser eruption data for a bivariate geyser system and offers a deeper understanding of the event occurrence mechanism of individual events as well as the system as a whole. A comprehensive simulation study is conducted to evaluate the performance of the proposed method.
翻译:Geyser喷发是黄石公园最受欢迎的标志性景点之一,热泉喷发和共变现象的相互依存性是热质研究研究人员感兴趣的。在本文件中,我们提出了一个参数共变调整的经常性事件模型,用于估计喷发间隔时间。我们描述了一个一般的双变重复事件过程,在这个过程中,使用双变正正态分布和一个具有不同边缘分布的 Gumbel 相交点来模拟一个相互依存的双型事件系统。使用最大可能性的方法来估计模型参数。拟议方法用于分析黄石热质喷发数据,用于双变热源系统,更深入地了解个别事件的发生机制和整个系统。进行了全面模拟研究,以评价拟议方法的性能。