Multi-robot decision-making is the process where multiple robots coordinate actions. In this paper, we aim for efficient and effective multi-robot decision-making despite the robots' limited on-board resources and the often resource-demanding complexity of their tasks. We introduce the first algorithm enabling the robots to choose with which few other robots to coordinate and provably balance the trade-off of centralized vs. decentralized coordination. Particularly, centralization favors globally near-optimal decision-making but at the cost of increased on-board resource requirements; whereas, decentralization favors minimal resource requirements but at a global suboptimality cost. All robots can thus afford our algorithm, irrespective of their resources. We are motivated by the future of autonomy that involves multiple robots coordinating actions to complete resource-demanding tasks, such as target tracking, area coverage, and monitoring. To provide closed-form guarantees, we focus on maximization problems involving monotone and "doubly" submodular functions. To capture the cost of decentralization, we introduce the notion of Centralization Of Information among non-Neighbors (COIN). We validate our algorithm in simulated scenarios of image covering.
翻译:多机器人决策是多个机器人协调行动的过程。 在本文中,我们的目标是,尽管机器人在机上资源有限,而且任务往往需要资源复杂,但多机器人决策效率高、效率高、效率高、多机器人决策。我们引入了第一个算法,使机器人能够选择由少数几个其他机器人来协调并可能平衡集中式与分散式协调之间的权衡。特别是,集中化有利于全球接近最佳的决策,但以增加机上资源需求的代价为代价;而分散化有利于最低资源要求,但以全球亚最佳性成本为代价。因此,所有机器人都能够负担得起我们的算法,而不管他们的资源如何。我们受到未来自主的驱动,这涉及多个机器人协调完成资源需求任务的行动,例如目标跟踪、区域覆盖和监测。为了提供封闭式保证,我们侧重于单一式和“大胆”亚模调功能的最大化问题。为了了解分散化的成本,我们引入了非维氏式图像中的信息集中化概念。我们用模拟了我们的图像模型。