Multi-robot decision-making is the process where multiple robots coordinate actions. In this paper, we aim for efficient and effective multi-robot decision-making despite the robots' limited on-board resources and the often resource-demanding complexity of their tasks. We introduce the first algorithm enabling the robots to choose with which few other robots to coordinate and provably balance the trade-off of centralized vs. decentralized coordination. Particularly, centralization favors globally near-optimal decision-making but at the cost of increased on-board resource requirements; whereas, decentralization favors minimal resource requirements but at a global suboptimality cost. All robots can thus afford our algorithm, irrespective of their resources. We are motivated by the future of autonomy that involves multiple robots coordinating actions to complete resource-demanding tasks, such as target tracking, area coverage, and monitoring. To provide closed-form guarantees, we focus on maximization problems involving monotone and "doubly" submodular functions. To capture the cost of decentralization, we introduce the notion of Centralization Of Information among non-Neighbors (COIN). We validate our algorithm in simulated scenarios of image covering.


翻译:多机器人决策是多个机器人协调行动的过程。 在本文中,我们的目标是,尽管机器人在机上资源有限,而且任务往往需要资源复杂,但多机器人决策效率高、效率高、效率高、多机器人决策。我们引入了第一个算法,使机器人能够选择由少数几个其他机器人来协调并可能平衡集中式与分散式协调之间的权衡。特别是,集中化有利于全球接近最佳的决策,但以增加机上资源需求的代价为代价;而分散化有利于最低资源要求,但以全球亚最佳性成本为代价。因此,所有机器人都能够负担得起我们的算法,而不管他们的资源如何。我们受到未来自主的驱动,这涉及多个机器人协调完成资源需求任务的行动,例如目标跟踪、区域覆盖和监测。为了提供封闭式保证,我们侧重于单一式和“大胆”亚模调功能的最大化问题。为了了解分散化的成本,我们引入了非维氏式图像中的信息集中化概念。我们用模拟了我们的图像模型。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员