Prompt-based methods have become increasingly popular among information extraction tasks, especially in low-data scenarios. By formatting a finetune task into a pre-training objective, prompt-based methods resolve the data scarce problem effectively. However, seldom do previous research investigate the discrepancy among different prompt formulating strategies. In this work, we compare two kinds of prompts, name-based prompt and ontology-base prompt, and reveal how ontology-base prompt methods exceed its counterpart in zero-shot event argument extraction (EAE) . Furthermore, we analyse the potential risk in ontology-base prompts via a causal view and propose a debias method by causal intervention. Experiments on two benchmarks demonstrate that modified by our debias method, the baseline model becomes both more effective and robust, with significant improvement in the resistance to adversarial attacks.
翻译:在信息提取任务中,特别是在低数据情景中,基于即时的方法越来越受欢迎。通过将微调任务格式化为培训前目标,基于迅速的方法有效解决数据稀缺问题。然而,以往的研究很少调查不同快速制定战略之间的差异。在这项工作中,我们比较两种基于名称的快速和基于本体学的快速快速快速的提示,并揭示本体学基础的快速方法如何在零发事件参数提取(EAE)中超越了对应方法。此外,我们通过因果关系分析本体基础的提示的潜在风险,并通过因果干预提出一种偏差方法。对两个基准的实验表明,根据我们的偏差方法,基线模型变得更加有效和有力,对对抗性攻击的抵抗力也大有改进。