Deep learning techniques for gravitational-wave parameter estimation have emerged as a fast alternative to standard samplers $\unicode{x2013}$ producing results of comparable accuracy. These approaches (e.g., DINGO) enable amortized inference by training a normalizing flow to represent the Bayesian posterior conditional on observed data. By conditioning also on the noise power spectral density (PSD) they can even account for changing detector characteristics. However, training such networks requires knowing in advance the distribution of PSDs expected to be observed, and therefore can only take place once all data to be analyzed have been gathered. Here, we develop a probabilistic model to forecast future PSDs, greatly increasing the temporal scope of DINGO networks. Using PSDs from the second LIGO-Virgo observing run (O2) $\unicode{x2013}$ plus just a single PSD from the beginning of the third (O3) $\unicode{x2013}$ we show that we can train a DINGO network to perform accurate inference throughout O3 (on 37 real events). We therefore expect this approach to be a key component to enable the use of deep learning techniques for low-latency analyses of gravitational waves.
翻译:引力波参数估计的深学习技术已经出现,作为标准取样器$\uncode{x2013}美元得出可比准确性结果的一个快速替代方法。这些方法(例如DINGO)通过训练正常流来代表巴伊西亚后星体,以观测数据为条件。它们还可以根据噪音光谱密度(PSD)来计算探测器特征的变化。然而,培训这类网络需要事先了解预期要观测到的私营部门司的分布,因此只有在收集到所有要分析的数据后才能进行。在这里,我们开发了一个预测未来私营部门司的概率模型,大大增加了DINGO网络的时间范围。使用第二次LIGO-Virgo观测运行的私营部门司(O2)$\uncode{x2013},加上从第三次开始(O3)$\uncode{x2013}开始的单一私营部门司。我们证明,我们可以训练一个DINGO网络,在整个O3(37号实际事件)期间准确进行推导。因此,我们期望这一方法能够使低波层分析的关键部分得以使用。