State-of-the-art (SOTA) Generative Models (GMs) can synthesize photo-realistic images that are hard for humans to distinguish from genuine photos. Identifying and understanding manipulated media are crucial to mitigate the social concerns on the potential misuse of GMs. We propose to perform reverse engineering of GMs to infer model hyperparameters from the images generated by these models. We define a novel problem, "model parsing", as estimating GM network architectures and training loss functions by examining their generated images - a task seemingly impossible for human beings. To tackle this problem, we propose a framework with two components: a Fingerprint Estimation Network (FEN), which estimates a GM fingerprint from a generated image by training with four constraints to encourage the fingerprint to have desired properties, and a Parsing Network (PN), which predicts network architecture and loss functions from the estimated fingerprints. To evaluate our approach, we collect a fake image dataset with 100K images generated by 116 different GMs. Extensive experiments show encouraging results in parsing the hyperparameters of the unseen models. Finally, our fingerprint estimation can be leveraged for deepfake detection and image attribution, as we show by reporting SOTA results on both the deepfake detection (Celeb-DF) and image attribution benchmarks.
翻译:最新艺术(SOTA)生成模型(GMs)可以综合人类难以与真实照片区分的摄影现实图像。 识别和理解被操纵的媒体对于减轻社会对潜在滥用GMs的担忧至关重要。 我们提议对GM进行反向工程,从这些模型产生的图像中推导模型超光度计。 我们定义了一个新颖的问题,即“模型分析”,通过审查产生的图像来估计GM网络结构和培训损失功能,这是人类似乎不可能完成的任务。为了解决这个问题,我们提出了一个包含两个组成部分的框架:指纹估计网络,它从鼓励指纹具有预期特性的四种限制的培训产生的图像中估算GM指纹;以及一个剖析网络(PNP),它预测这些模型产生的图像的网络结构和损失功能。为了评估我们的方法,我们用116个不同的GMs所生成的100K图像来收集一个假图像数据集。 广泛的实验表明,在区分看不见模型的超光谱中取得了令人鼓舞的结果。 最后,我们的指纹估计可以利用GNFDF的深度探测和归属基准来显示SOFDF的深度探测和归属。