We consider standard physics informed neural network solution methods for elliptic partial differential equations with oscillatory coefficients. We show that if the coefficient in the elliptic operator contains frequencies on the order of $1/\epsilon$, then the Frobenius norm of the neural tangent kernel matrix associated to the loss function grows as $1/\epsilon^2$. Numerical examples illustrate the stiffness of the optimization problem.
翻译:我们认为标准物理知情神经网络解决方案对于具有悬浮系数的椭圆部分偏差方程式来说是标准的。我们表明,如果椭圆操作器的系数包含频率约为1美元/千塞隆,那么与损失功能相关的神经相近内核矩阵的Frobenius规范将增长为1美元/千西隆2美元。数字例子说明了优化问题的严谨性。