Using geometric landmarks like lines and planes can increase navigation accuracy and decrease map storage requirements compared to commonly-used LiDAR point cloud maps. However, landmark-based registration for applications like loop closure detection is challenging because a reliable initial guess is not available. Global landmark matching has been investigated in the literature, but these methods typically use ad hoc representations of 3D line and plane landmarks that are not invariant to large viewpoint changes, resulting in incorrect matches and high registration error. To address this issue, we adopt the affine Grassmannian manifold to represent 3D lines and planes and prove that the distance between two landmarks is invariant to rotation and translation if a shift operation is performed before applying the Grassmannian metric. This invariance property enables the use of our graph-based data association framework for identifying landmark matches that can subsequently be used for registration in the least-squares sense. Evaluated on a challenging landmark matching and registration task using publicly-available LiDAR datasets, our approach yields a 1.7x and 3.5x improvement in successful registrations compared to methods that use viewpoint-dependent centroid and "closest point" representations, respectively.
翻译:使用像线和平面这样的几何地标可以提高导航准确性,并减少地图储存要求,而与常用的LiDAR点云图相比,使用LiDAR点云图可以提高导航准确性,减少地图储存要求。然而,对环闭探测等应用程序进行基于地标的登记具有挑战性,因为没有可靠的初步猜测。在文献中对全球地标匹配进行了调查,但这些方法通常使用3D线和平面标的临时性表示方式,这些表示方式不易导致大视角变化,导致不正确的匹配和高注册错误。为解决这一问题,我们采用了草地方方方块块的方块块来代表3D线和平面,并证明如果在应用格拉斯曼度之前进行转换操作,两个地标之间的距离是无法旋转和翻译的。这种差异性属性使得能够使用我们基于图形的数据联系框架来确定里程碑匹配,从而可以在最小意义上用于登记,从而导致使用公开可得的LDAR数据集评估具有挑战性的地标匹配和登记任务,我们的方法使成功登记的方法比使用依赖视点和“最接近点”的表示方式分别改进了1.7x和3.5x。