We consider a decentralized graph coloring model where each vertex only knows its own color and whether some neighbor has the same color as it. The networking community has studied this model extensively due to its applications to channel selection, rate adaptation, etc. Here, we analyze variants of a simple algorithm of Bhartia et al. [Proc., ACM MOBIHOC, 2016]. In particular, we introduce a variant which requires only $O(n\log\Delta)$ expected recolorings that generalizes the coupon collector problem. Finally, we show that the $O(n\Delta)$ bound Bhartia et al. achieve for their algorithm still holds and is tight in adversarial scenarios.
翻译:我们考虑一个分散化的图形色素模型,每个顶端只知道自己的颜色,并且某些邻居是否拥有与它相同的颜色。 网络社区已经广泛研究了这个模型, 因为它应用于频道选择、 比例适应等。 在这里, 我们分析Bhartia et al. [Proc., ACM MOBIHOC, 2016] 简单算法的变异。 特别是, 我们引入了一个变异模型, 它只需要$O( n\log\ Delta) $( $) 的预期重新颜色, 从而概括了优惠券收藏者的问题。 最后, 我们显示, 美元( n\ Delta) $( $) 捆绑 Bhartia et al. 等的算法仍然维持着, 并且在对抗情景中非常紧凑。