Easy to construct and optimally convergent generalisations of B-splines to unstructured meshes are essential for the application of isogeometric analysis to domains with non-trivial topologies. Nonetheless, especially for hexahedral meshes, the construction of smooth and optimally convergent isogeometric analysis basis functions is still an open question. We introduce a simple partition of unity construction that yields smooth blended B-splines, referred to as SB-splines, on semi-structured quadrilateral and hexahedral meshes, namely on mostly structured meshes with a few sufficiently separated unstructured regions. To this end, we first define the mixed smoothness B-splines that are $C^0$ continuous in the unstructured regions of the mesh but have higher smoothness everywhere else. Subsequently, the SB-splines are obtained by smoothly blending in the physical space the mixed smoothness B-splines with Bernstein bases of equal degree. One of the key novelties of our approach is that the required smooth weight functions are assembled from the available smooth B-splines on the unstructured mesh. The SB-splines are globally smooth, non-negative, have no breakpoints within the elements and reduce to conventional B-splines away from the unstructured regions of the mesh. Although we consider only quadratic mixed smoothness B-splines in this paper, the construction generalises to arbitrary degrees. We demonstrate the excellent performance of SB-splines studying Poisson and biharmonic problems on semi-structured quadrilateral and hexahedral meshes, and numerically establishing their optimal convergence in one and two dimensions.
翻译:容易构建且最优化地趋同 B 线的 B 线和 未结构化的 meshes 是将等离子分析应用到非三角表层区域的关键。 尽管如此, 特别是对于六面形的模类, 建造平滑和最佳趋同的等分数分析基础功能仍是一个未决问题。 我们引入一个简单的团结结构分割, 在半结构化的四边线和六面形间距上生成平滑混合的 B 线, 称为 SB 线, 在半结构化的四边形和六面形间距上, 也就是大多数结构化的模类间距上, 以及几个足够分离的不结构区域。 然而, 我们首先定义了混合的平滑 B 线, 在平流的平流结构中, 在平滑的平流的平流结构中, 在平滑的平流的平流的平流的平流结构区域中, 平滑的平滑的平流的平流的平滑的平流的平流的平流的平流的平滑的平滑的平流区域, 在平滑的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流区域中, 在平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流区域中, 在平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的平流的