Many research questions concern treatment effects on outcomes that can recur several times in the same individual. For example, medical researchers are interested in treatment effects on hospitalizations in heart failure patients and sports injuries in athletes. Competing events, such as death, complicate causal inference in studies of recurrent events because once a competing event occurs, an individual cannot have more recurrent events. Several statistical estimands have been studied in recurrent event settings, with and without competing events. However, the causal interpretations of these estimands, and the conditions that are required to identify these estimands from observed data, have yet to be formalized. Here we use a counterfactual framework for causal inference to formulate several causal estimands in recurrent event settings, with and without competing events. When competing events exist, we clarify when commonly used classical statistical estimands can be interpreted as causal quantities from the causal mediation literature, such as (controlled) direct effects and total effects. Furthermore, we show that recent results on interventionist mediation estimands allow us to define new causal estimands with recurrent and competing events that may be of particular clinical relevance in many subject matter settings. We use causal directed acyclic graphs and single world intervention graphs to illustrate how to reason about identification conditions for the various causal estimands using subject matter knowledge. Furthermore, using results on counting processes, we show how our causal estimands and their identification conditions, which are articulated in discrete time, converge to classical continuous-time counterparts in the limit of fine discretizations of time. Finally, we propose several estimators and establish their consistency for the various identifying functionals.
翻译:许多研究问题涉及治疗对结果的影响,这种结果在同一个人中可以反复发生几次。例如,医学研究人员对治疗对心脏衰竭病人住院和运动员体育伤害的影响感兴趣。相互竞争的事件,例如死亡,使经常性事件研究中的因果推断复杂化,因为一旦发生竞争事件,一个人就不能有更经常的事件。在经常事件的情况下,对一些统计估计进行了研究,这些统计估计是在经常事件情况下,有或没有发生竞争事件的情况下进行的。然而,这些估计的因果关系解释,以及从观察到的数据中确定这些估计值所需的条件,尚未正式确定。在这里,我们使用一个反事实框架来推断因果因素,在经常事件环境中,以及没有发生相互竞争的事件时,使因果因素推论复杂化。当出现相互竞争的事件时,我们澄清通常使用的典型统计估计值可以被解释为因果数量,例如(受控制的)直接效果和总影响。此外,我们显示干预性调解的近期结果,使我们得以界定新的因果估计值,用经常和相互竞争的时间框架,在经常性事件环境中,我们用一个特定的因果因素来说明,我们使用各种因果判断结果,我们如何使用各种因果判断。我们用各种因果判断结果来显示各种因果判断结果,我们使用各种因果判断结果,用各种因果判断结果,我们使用各种因果结果,用各种因果因素来显示各种因果计算。我们使用各种因果的理学的理学的理学的理理学的理学的理学的理学的理学的理学的理学的理学的理学的理学原理。我们使用不同的计算。我们使用各种理学理学理学的理。我们使用各种理。我们使用不同的理学原理,在使用不同的理学学学学学学学学学学学学学学学学学学学学学学学的理学的理学的理学的理学的理学原理的理学的理学的理学的理学的理学的理学的理学的理学的理学的理学的理学的理学的理。我们使用不同的理。