The inclusion of intermittent and renewable energy sources has increased the importance of demand forecasting in power systems. Smart meters can play a critical role in demand forecasting due to the measurement granularity they provide. Consumers' privacy concerns, reluctance of utilities and vendors to share data with competitors or third parties, and regulatory constraints are some constraints smart meter forecasting faces. This paper examines a collaborative machine learning method for short-term demand forecasting using smart meter data as a solution to the previous constraints. Privacy preserving techniques and federated learning enable to ensure consumers' confidentiality concerning both, their data, the models generated using it (Differential Privacy), and the communication mean (Secure Aggregation). The methods evaluated take into account several scenarios that explore how traditional centralized approaches could be projected in the direction of a decentralized, collaborative and private system. The results obtained over the evaluations provided almost perfect privacy budgets (1.39,$10e^{-5}$) and (2.01,$10e^{-5}$) with a negligible performance compromise.
翻译:将间歇性和可再生能源纳入电力系统增加了需求预测的重要性; 智能米因其提供的测量颗粒性,可在需求预测中发挥关键作用; 消费者的隐私关切、公用事业和供应商不愿与竞争者或第三方分享数据以及监管方面的制约因素是一些制约因素; 智能计量预测; 本文审查了利用智能计量数据进行短期需求预测的合作机器学习方法,这是解决以往制约因素的一个办法; 隐私保护技术和联合学习能够确保消费者对其数据、使用这些数据产生的模型(差异隐私)和通信平均值(安全聚合)的保密性。 所评价的方法考虑到几种设想,即探讨如何在分散、协作和私人系统的方向上预测传统的集中方法; 通过评价获得的结果提供了几乎完美的隐私预算(1.39美元,10 5 美元)和(2.01美元,10 5美元),但业绩妥协微不足道。