Fast forecasting of reservoir pressure distribution in geologic carbon storage (GCS) by assimilating monitoring data is a challenging problem. Due to high drilling cost, GCS projects usually have spatially sparse measurements from wells, leading to high uncertainties in reservoir pressure prediction. To address this challenge, we propose to use low-cost Interferometric Synthetic-Aperture Radar (InSAR) data as monitoring data to infer reservoir pressure build up. We develop a deep learning-accelerated workflow to assimilate surface displacement maps interpreted from InSAR and to forecast dynamic reservoir pressure. Employing an Ensemble Smoother Multiple Data Assimilation (ES-MDA) framework, the workflow updates three-dimensional (3D) geologic properties and predicts reservoir pressure with quantified uncertainties. We use a synthetic commercial-scale GCS model with bimodally distributed permeability and porosity to demonstrate the efficacy of the workflow. A two-step CNN-PCA approach is employed to parameterize the bimodal fields. The computational efficiency of the workflow is boosted by two residual U-Net based surrogate models for surface displacement and reservoir pressure predictions, respectively. The workflow can complete data assimilation and reservoir pressure forecasting in half an hour on a personal computer.
翻译:通过同化监测数据,快速预测地质碳储存中的储油层压力分布是一个具有挑战性的问题。由于钻井成本高,GCS项目通常从油井进行空间稀少的测量,导致储油层压力预测的不确定性很高。为了应对这一挑战,我们提议使用低成本的干涉测量合成孔径雷达(InSAR)数据作为监测数据,以推断储油层压力的积累。我们开发了一个深层次的学习加速工作流程,以吸收从InSAR解释的地表迁移图和预测动态储油层压力。使用一个混合的滑动多数据模拟(ES-MDA)框架,工作流程更新三维(3D)地质特性,并预测储油层压力和量化不确定性的压力。我们使用一个合成商业规模的GCS模型,使用双式分布的渗透性和孔隙度来显示工作流程的功效。我们采用了一种两步CNN-PCA方法来对双向地基流场进行参数化。在地面迁移和半气压流中分别使用两个基于U网络的顶流模型来提高工作流程的计算效率。