Polarized color photography provides both visual textures and object surficial information in one single snapshot. However, the use of the directional polarizing filter array causes extremely lower photon count and SNR compared to conventional color imaging. Thus, the feature essentially leads to unpleasant noisy images and destroys polarization analysis performance. It is a challenge for traditional image processing pipelines owing to the fact that the physical constraints exerted implicitly in the channels are excessively complicated. To address this issue, we propose a learning-based approach to simultaneously restore clean signals and precise polarization information. A real-world polarized color image dataset of paired raw short-exposed noisy and long-exposed reference images are captured to support the learning-based pipeline. Moreover, we embrace the development of vision Transformer and propose a hybrid transformer model for the Polarized Color image denoising, namely PoCoformer, for a better restoration performance. Abundant experiments demonstrate the effectiveness of proposed method and key factors that affect results are analyzed.
翻译:极化的彩色摄影在一次快照中提供视觉质地和对象表面信息。 但是,使用方向极化过滤器阵列导致光子计数和SNR与常规彩色成像相比极低。 因此, 特征基本上导致不愉快的噪音图像, 并破坏极化分析性能。 这是传统图像处理管道的一个挑战, 因为频道中隐含的物理限制过于复杂。 为了解决这个问题, 我们提议了一种基于学习的方法, 以同时恢复干净的信号和精确的极化信息。 为了支持基于学习的管道, 我们采集了一个真实世界极化的、 极化的彩色图像数据集。 此外, 我们拥抱了视觉变异器的开发, 并为极化彩色图像的淡化提出了一种混合变异器模型, 即 Pocoexect, 以更好地恢复性能。 模拟实验展示了拟议方法和影响结果的关键因素的有效性 。