In this article, we propose a numerical method based on sparse Gaussian processes (SGPs) to solve nonlinear partial differential equations (PDEs). The SGP algorithm is based on a Gaussian process (GP) method, which approximates the solution of a PDE with the maximum a posteriori probability estimator of a GP conditioned on the PDE evaluated at a finite number of sample points. The main bottleneck of the GP method lies in the inversion of a covariance matrix, whose cost grows cubically with respect to the size of samples. To improve the scalability of the GP method while retaining desirable accuracy, we draw inspiration from SGP approximations, where inducing points are introduced to summarize the information of samples. More precisely, our SGP method uses a Gaussian prior associated with a low-rank kernel generated by inducing points randomly selected from samples. In the SGP method, the size of the matrix to be inverted is proportional to the number of inducing points, which is much less than the size of the samples. The numerical experiments show that the SGP method using less than half of the uniform samples as inducing points achieves comparable accuracy to the GP method using the same number of uniform samples, which significantly reduces the computational cost. We give the existence proof for the approximation to the solution of a PDE and provide rigorous error analysis.


翻译:在本篇文章中,我们提出了一个基于稀疏高斯进程(SGPs)的数字方法,以解决非线性部分方程(PDEs)问题。SGP算法基于一个高斯进程(GP)方法,该方法近似于PDE的解决方案,其最大外生概率估计值以PDE在有限数量的抽样点进行评估的GP值为条件。GP方法的主要瓶颈在于颠倒一个共变矩阵,其成本与样品大小成异地增长。为了提高GP方法的可缩放性,同时保持可取的准确性,我们从SGP近似方法(GPs)中汲取灵感,在其中引入导出点以汇总样品信息。更准确地说,我们的SGP方法使用一个以前与从抽样中随机选取的点产生的低内核相联的高素。在SGP方法中,要倒转的矩阵大小与引点数成比例成正比,这远远小于样品的大小,我们从数字实验中提取了SGPGP方法的精确度,而我们用同一的精确性方法使样本的精确度降低了我们采用的统一的精确度。

0
下载
关闭预览

相关内容

欧洲几何学研讨会(SGP)是传播几何学 新研究思想和前沿成果的重要场所。在此研究领域中,对数学、计算机科学和工程学的概念进行了研究和应用,以提供新的见解并为3D模型和形状集合的处理、建模、分析、操纵、仿真和其他类型的处理设计高效的算法。 官网地址:http://dblp.uni-trier.de/db/conf/sgp/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月29日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员