Modern Python projects execute computational functions using native libraries and give Python interfaces to boost execution speed; hence, testing these libraries becomes critical to the project's robustness. One challenge is that existing approaches use coverage to guide generation, but native libraries run as black boxes to Python code with no execution information. Another is that dynamic binary instrumentation reduces testing performance as it needs to monitor both native libraries and the Python virtual machine. To address these challenges, in this paper, we propose an automated test case generation approach that works at the Python code layer. Our insight is that many path conditions in native libraries are for processing input data structures through interacting with the VM. In our approach, we instrument the Python Interpreter to monitor the interactions between native libraries and VM, derive constraints on the structures, and then use the constraints to guide test case generation. We implement our approach in a tool named PyCing and apply it to six widely-used Python projects. The experimental results reveal that with the structure constraint guidance, PyCing can cover more execution paths than existing test cases and state-of-the-art tools. Also, with the checkers in the testing framework Pytest, PyCing can identify segmentation faults in 10 Python interfaces and memory leaks in 9. Our instrumentation strategy also has an acceptable influence on testing efficiency.


翻译:现代 Python 项目使用本地图书馆执行计算功能, 并给 Python 界面提供提高执行速度的计算功能; 因此, 测试这些图书馆对项目的稳健性至关重要 。 一个挑战是, 现有方法使用覆盖来引导生成, 但本地图书馆作为黑盒运行到 Python 代码, 没有执行信息 。 另一个是动态二进制仪减少测试性能, 因为它需要同时监测本地图书馆和 Python 虚拟机器 。 为了应对这些挑战, 我们在本文件中提出一个在 Python 代码层运行的自动测试案例生成方法 。 我们的洞察力是, 本地图书馆的许多路径条件都是通过与 VM 互动处理输入数据结构的。 我们的方法是, 我们用 Python Interprepret 来监测本地图书馆和 Vython 代码的代码的代码。 我们用一个名为 PyC 的工具来实施我们的测试方法, 并将其应用到六个广泛使用的 Python 项目中。 实验结果显示, PyC 能够覆盖更多的执行路径路径路径, 在现有的测试案例和状态测试工具中, 测试工具中, 也用一个可接受的 Ptreal- check- checkmental- constration viculation vical

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员