We develop an efficient algorithmic approach for approximate counting and sampling in the low-temperature regime of a broad class of statistical physics models on finite subsets of the lattice $\mathbb Z^d$ and on the torus $(\mathbb Z/n \mathbb Z)^d$. Our approach is based on combining contour representations from Pirogov-Sinai theory with Barvinok's approach to approximate counting using truncated Taylor series. Some consequences of our main results include an FPTAS for approximating the partition function of the hard-core model at sufficiently high fugacity on subsets of $\mathbb Z^d$ with appropriate boundary conditions and an efficient sampling algorithm for the ferromagnetic Potts model on the discrete torus $(\mathbb Z/n \mathbb Z)^d$ at sufficiently low temperature.
翻译:我们开发了一种高效的算法方法,用于在低温制度下对一系列广泛的统计物理模型进行近似计算和取样。我们采用的方法是,将Pirogov-Sinai理论的等距表示与Barvinok利用短流泰勒系列进行近似计算的方法相结合。我们的主要结果包括:FPTAS在足够低的温度下,在足够低的温度下,在足够高的烟雾中,将硬核心模型的分离功能相近,在足够高的烟雾中,在适当的边界条件下,将硬核心模型的分离功能相近,在足够低的温度下,对离心磁器模型中的铁磁器进行高效取样算法。