The generic homomorphism problem, which asks whether an input graph $G$ admits a homomorphism into a fixed target graph $H$, has been widely studied in the literature. In this article, we provide a fine-grained complexity classification of the running time of the homomorphism problem with respect to the clique-width of $G$ (denoted $\operatorname{cw}$) for virtually all choices of $H$ under the Strong Exponential Time Hypothesis. In particular, we identify a property of $H$ called the signature number $s(H)$ and show that for each $H$, the homomorphism problem can be solved in time $\mathcal{O}^*(s(H)^{\operatorname{cw}})$. Crucially, we then show that this algorithm can be used to obtain essentially tight upper bounds. Specifically, we provide a reduction that yields matching lower bounds for each $H$ that is either a projective core or a graph admitting a factorization with additional properties -- allowing us to cover all possible target graphs under long-standing conjectures.
翻译:通用同质性问题, 询问输入图$G$是否接受同质性进入固定目标图$H美元, 文献中对此进行了广泛研究。 在本条中, 我们提供了对同质性问题运行时间的细微复杂分类, 即对于“ 强烈的指数时间假曲”下几乎所有选择的美元, 即G$( 注意$$\ operatorname{ cw}$) 来说, 共质性( 美元) 。 具体地说, 我们给出了一个减值, 与每1美元( $H) 的下限值相当, 即标注数为$( H) $( $), 并表明每美元, 单美元, 单质性问题可以用$\ mathcal{ O ⁇ ( H) { { { { { { { { { { { { { { } { { { } $ $ ( $ $ ) coth) $ ( $ $ ) 。 。 。 我们然后证明, 这个算算法可以使用这个算法 来获取基本上最紧紧的上限。 。 。 具体而言, 我们提供的减值与每美元的下每美元均值与每美元相较低限值为每美元, 等于等于等于等于每美元, 0.1 0.1美元, 0.1美元, 0.1美元, 0.1美元, 0.1美元, 0.1美元, 是投影中, 0.1美元, 0.1美元, 的下, 的下, 。