Many countries measure poverty based only on income or consumption. However, there is a growing awareness of measuring poverty through multiple dimensions that captures a more reasonable status of poverty. Estimating poverty measure(s) for small geographical areas, commonly referred to as poverty mapping, is challenging due to small or no sample for the small areas. While there is a huge literature available on unidimensional poverty mapping, only a limited effort has been made to address special challenges that arise only in the multidimensional poverty mapping. For example, in multidimensional poverty mapping, a new problem arises involving estimation of relative contributions of different dimensions to overall poverty for small areas. This problem has been grossly ignored in the small area estimation (SAE) literature. We address this issue using a multivariate hierarchical model implemented via a Bayesian method. Moreover, we demonstrate how a multidimensional poverty composite measure can be estimated for small areas. In this paper, we demonstrate our proposed methodology using a survey data specially designed by one of us for multidimensional poverty mapping. This paper adds a new direction to poverty mapping literature.
翻译:暂无翻译