A unit disk graph $G$ on a given set $P$ of points in the plane is a geometric graph where an edge exists between two points $p,q \in P$ if and only if $|pq| \leq 1$. A spanning subgraph $G'$ of $G$ is a $k$-hop spanner if and only if for every edge $pq\in G$, there is a path between $p,q$ in $G'$ with at most $k$ edges. We obtain the following results for unit disk graphs in the plane. (I) Every $n$-vertex unit disk graph has a $5$-hop spanner with at most $5.5n$ edges. We analyze the family of spanners constructed by Biniaz (2020) and improve the upper bound on the number of edges from $9n$ to $5.5n$. (II) Using a new construction, we show that every $n$-vertex unit disk graph has a $3$-hop spanner with at most $11n$ edges. (III) Every $n$-vertex unit disk graph has a $2$-hop spanner with $O(n\log n)$ edges. This is the first nontrivial construction of $2$-hop spanners. (IV) For every sufficiently large positive integer $n$, there exists a set $P$ of $n$ points on a circle, such that every plane hop spanner on $P$ has hop stretch factor at least $4$. Previously, no lower bound greater than $2$ was known. (V) For every finite point set on a circle, there exists a plane (i.e., crossing-free) $4$-hop spanner. As such, this provides a tight bound for points on a circle. (VI) The maximum degree of $k$-hop spanners cannot be bounded from above by a function of $k$ for any positive integer $k$.
翻译:一张单位磁盘图 $G$, 在给定的固定的平方美元点数中, 一张单位磁盘图是一张几何图, 平方美元之间有两点的边距, 如果而且只有$+pq = leq 1美元, 才会有两点之间的边距。 一个横跨的子盘G$$$G$是美元, 如果对于每个边端$pq美元, 平方美元, 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元 平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方美元平方圆。