Lightness is a fundamental parameter for Euclidean spanners; it is the ratio of the spanner weight to the weight of the minimum spanning tree of a finite set of points in $\mathbb{R}^d$. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on $\varepsilon>0$ and $d\in \mathbb{N}$ of the minimum lightness of $(1+\varepsilon)$-spanners, and observed that additional Steiner points can substantially improve the lightness. Le and Solomon (2020) constructed Steiner $(1+\varepsilon)$-spanners of lightness $O(\varepsilon^{-1}\log\Delta)$ in the plane, where $\Delta\geq \Omega(\sqrt{n})$ is the \emph{spread} of the point set, defined as the ratio between the maximum and minimum distance between a pair of points. They also constructed spanners of lightness $\tilde{O}(\varepsilon^{-(d+1)/2})$ in dimensions $d\geq 3$. Recently, Bhore and T\'{o}th (2020) established a lower bound of $\Omega(\varepsilon^{-d/2})$ for the lightness of Steiner $(1+\varepsilon)$-spanners in $\mathbb{R}^d$, for $d\ge 2$. The central open problem in this area is to close the gap between the lower and upper bounds in all dimensions $d\geq 2$. In this work, we show that for every finite set of points in the plane and every $\varepsilon>0$, there exists a Euclidean Steiner $(1+\varepsilon)$-spanner of lightness $O(\varepsilon^{-1})$; this matches the lower bound for $d=2$. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis.


翻译:亮度是 Euclidean spanner 的基本参数; 它是 spaner2 美元的最低亮度比 ; 它是 spanner 的比重 。 在近期的突破中, Le 和 Solo (2019) 在平面上建立了 $\ varepsilon> 0 美元和 $ d\ in\ mathb{N} 美元的最低亮度 ; 并且它观察到 额外的 Steiner 点可以大大改善光度 。 Le 和 所罗门 (202020) 构建了 Steiner $ ( 1\\ vareprepsil) 美元的最低亮度 。 le and spaner $ $ $@ laxlusion_ listal_ listal_ listal_ $rqlational_ listal_ dirion_ lax more_ modeal_ $ lax_ lax_ a modeal_ modeal_ a dal_ modeal_ a modeal_ modeal_ modeal_ r_ la_ r_ r_ d_ d_ modeal_ lax_ d_ mox_ d_ d_ d_ lax_ mod_ mob_ mob_ mob_ mod_ mox_ mox_ moxx_ mox_ i_ la_ la_ mod_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ lab_ la_ la_ la_ la_ la_ la_ la_ lab_ mob_ la_ mob_ mob_ la_ la_ lab} mo_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_ la_

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
82+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月25日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月20日
Arxiv
0+阅读 · 2021年5月20日
Arxiv
0+阅读 · 2021年5月20日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
82+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年4月25日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【LeetCode 500】关关的刷题日记27 Keyboard Row
专知
3+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员