We show that any proper coloring of a Kneser graph $KG_{n,k}$ with $n-2k+2$ colors contains a trivial color (i.e., a color consisting of sets that all contain a fixed element), provided $n>(2+\epsilon)k^2$, where $\epsilon\to 0$ as $k\to \infty$. This bound is essentially tight.
翻译:我们显示, Kneser 图形$KG ⁇ n, k}$$, $n-2k+2$ 彩色的任何适当颜色都包含一种微不足道的颜色( 即由包含固定元素的数据集组成的颜色), 条件是$ > (2 ⁇ epsilon) k ⁇ 2$, 即$\ epsilon\ 至 0$ $k\ to\ infty$。 此约束基本上很紧 。