Precise and rapid categorization of images in the B-scan ultrasound modality is vital for diagnosing ocular diseases. Nevertheless, distinguishing various diseases in ultrasound still challenges experienced ophthalmologists. Thus a novel contrastive disentangled network (CDNet) is developed in this work, aiming to tackle the fine-grained image categorization (FGIC) challenges of ocular abnormalities in ultrasound images, including intraocular tumor (IOT), retinal detachment (RD), posterior scleral staphyloma (PSS), and vitreous hemorrhage (VH). Three essential components of CDNet are the weakly-supervised lesion localization module (WSLL), contrastive multi-zoom (CMZ) strategy, and hyperspherical contrastive disentangled loss (HCD-Loss), respectively. These components facilitate feature disentanglement for fine-grained recognition in both the input and output aspects. The proposed CDNet is validated on our ZJU Ocular Ultrasound Dataset (ZJUOUSD), consisting of 5213 samples. Furthermore, the generalization ability of CDNet is validated on two public and widely-used chest X-ray FGIC benchmarks. Quantitative and qualitative results demonstrate the efficacy of our proposed CDNet, which achieves state-of-the-art performance in the FGIC task. Code is available at: https://github.com/ZeroOneGame/CDNet-for-OUS-FGIC .
翻译:B-scan超声波模式图像的精确和快速分类对于诊断眼球疾病至关重要。然而,区分超声波中的各种疾病仍然会遇到眼科学家的挑战。因此,在这项工作中开发了一个新型的对比分解网络(CDNet),分别旨在解决超声波图像中视觉异常的细微分解(FGIC)挑战,包括内核肿瘤(IOT)、视网分流(RD)、后心血管血压(PSS)和振动性脑出血(VH)。CDNet的三大基本组成部分是薄弱的监控损伤本地化模块(SSSLL)、对比多声波(CDZ)战略,以及超光谱反光谱的图像分类(HCD-Loss)。这些组成部分有助于在输入和输出两个方面进行细微分解识别。拟议的CDNet在我们的Z-O-O-O-Q-Q-QRalalal-C-C-QRalalal-C-C-C-Silveral-C-C-C-Silvacal-C-C-Silveral-Supal-C-G-C-Silva-C-C-C-C-C-C-C-C-C-C-C-C-staltraction-Supal-C-Supal-C-C-C-Supal-C-C-C-C-C-C-SUDFG-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-SD-S-S-S-S-S-S-S-S-S-S-S-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-S-C-C-C-C-C-C-C-C-C-C-C-C-C-C-S