The Automatic Dependent Surveillance-Broadcast (ADS-B) is a surveillance technology that becomes mandatory in many airspaces. It improves safety, increases efficiency and reduces air traffic congestion by broadcasting aircraft navigation data. Yet, ADS-B is vulnerable to spoofing attacks as it lacks mechanisms to ensure the integrity and authenticity of the data being supplied. None of the existing cryptographic solutions fully meet the backward compatibility and bandwidth preservation requirements of the standard. Hence, we propose the Compatible Authenticated Bandwidth-efficient Broadcast protocol for ADS-B (CABBA), an improved approach that integrates TESLA, phase-overlay modulation techniques and certificate-based PKI. As a result, entity authentication, data origin authentication, and data integrity are the security services that CABBA offers. To assess compliance with the standard, we designed an SDR-based implementation of CABBA and performed backward compatibility tests on commercial and general aviation (GA) ADS-B in receivers. Besides, we calculated the 1090ES band's activity factor and analyzed the channel occupancy rate according to ITU-R SM.2256-1 recommendation. Also, we performed a bit error rate analysis of CABBA messages. The results suggest that CABBA is backward compatible, does not incur significant communication overhead, and has an error rate that is acceptable for Eb/No values above 14 dB.
翻译:暂无翻译