It remains an open question whether incorporating external knowledge benefits commonsense reasoning while maintaining the flexibility of pretrained sequence models. To investigate this question, we develop generated knowledge prompting, which consists of generating knowledge from a language model, then providing the knowledge as additional input when answering a question. Our method does not require task-specific supervision for knowledge integration, or access to a structured knowledge base, yet it improves performance of large-scale, state-of-the-art models on four commonsense reasoning tasks, achieving state-of-the-art results on numerical commonsense (NumerSense), general commonsense (CommonsenseQA 2.0), and scientific commonsense (QASC) benchmarks. Generated knowledge prompting highlights large-scale language models as flexible sources of external knowledge for improving commonsense reasoning. Our code is available at https://github.com/liujch1998/GKP
翻译:为了调查这一问题,我们开发了生成的知识,包括从语言模式中产生知识,然后在回答一个问题时作为补充投入提供知识。我们的方法并不要求为知识整合或进入结构化知识库进行具体任务的监督,但是它改进了四种常见推理任务的大规模、最先进的模型的性能,在数字公证(NumerSense)、一般常识(CommonsenseQA 2.0)和科学常识(QASC)基准方面取得了最先进的结果。我们的方法并不要求对知识整合或进入结构化知识库进行灵活的外部知识来源,但是它改进了四种常见推理任务的大规模、最先进的模型的性能,在数字公证(NumerSense)、一般常识(ComonsenseQA 2.0)和科学常识(QASC)基准方面取得了最先进的结果。我们的准则可在https://github.com/liujch1998/GKP查阅。