Let $\Phi$ be a uniformly random $k$-SAT formula with $n$ variables and $m$ clauses. We study the algorithmic task of finding a satisfying assignment of $\Phi$. It is known that satisfying assignments exist with high probability up to clause density $m/n = 2^k \log 2 - \frac12 (\log 2 + 1) + o_k(1)$, while the best polynomial-time algorithm known, the Fix algorithm of Coja-Oghlan, finds a satisfying assignment at the much lower clause density $(1 - o_k(1)) 2^k \log k / k$. This prompts the question: is it possible to efficiently find a satisfying assignment at higher clause densities? We prove that the class of low degree polynomial algorithms cannot find a satisfying assignment at clause density $(1 + o_k(1)) \kappa^* 2^k \log k / k$ for a universal constant $\kappa^* \approx 4.911$. This class encompasses Fix, message passing algorithms including Belief and Survey Propagation guided decimation (with bounded or mildly growing number of rounds), and local algorithms on the factor graph. This is the first hardness result for any class of algorithms at clause density within a constant factor of that achieved by Fix. Our proof establishes and leverages a new many-way overlap gap property tailored to random $k$-SAT.


翻译:$\ phi$ 是一个单一随机的 $k$- SAT 公式, 含有 $n 变量和 $ 条款 。 我们研究寻找一个满意的 $\ phi$ 的 任务算法任务。 众所周知, 满足的任务存在的可能性很高, 高到条款密度 $/n = 2 k\log 2 -\ frac12 (\log 2 + 1 + + o_ k(1) + o_ k(1), 而已知的最佳多边时间算法, Coja- Oghlan 的固定算法, 找到一个更低的条款密度 $(1 - o_ k(1)) 2 k\ log k k k k / k$。 这促使问题: 能否在更高的条款密度 中有效找到满足的任务任务? 我们证明, 低度的多元性算法不能在条款密度 $( 1 + o_ k(1)) \ k palpha) 和 k$ 4. 911美元 中找到满意的任务任务任务任务, 这个类包含着不断传递的信息, 包括不断传递的精确的 轴 和 直观测量和 直观的精确的精确分析结果, 。 。 我们的精确的精确的精确的精确度测量和精确度测量测量和精确度测量测量测量的计算,,, 的精确度测量测量度测量测量度测量度测量度测量度测量度测量度测量度测量度测量度测量度测量度测量度测量度测量度测量度测量度测量度测量度测量度,, 。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员