Plant phenotyping is a central task in agriculture, as it describes plants' growth stage, development, and other relevant quantities. Robots can help automate this process by accurately estimating plant traits such as the number of leaves, leaf area, and the plant size. In this paper, we address the problem of joint semantic, plant instance, and leaf instance segmentation of crop fields from RGB data. We propose a single convolutional neural network that addresses the three tasks simultaneously, exploiting their underlying hierarchical structure. We introduce task-specific skip connections, which our experimental evaluation proves to be more beneficial than the usual schemes. We also propose a novel automatic post-processing, which explicitly addresses the problem of spatially close instances, common in the agricultural domain because of overlapping leaves. Our architecture simultaneously tackles these problems jointly in the agricultural context. Previous works either focus on plant or leaf segmentation, or do not optimise for semantic segmentation. Results show that our system has superior performance to state-of-the-art approaches, while having a reduced number of parameters and is operating at camera frame rate.
翻译:植物切除是农业的一项核心任务,因为它描述了植物的生长阶段、发育和其他相关数量。 机器人可以通过精确估计叶叶数量、 叶面积和植物大小等植物特征来帮助这一过程自动化。 在本文中, 我们从 RGB 数据中解决作物田的混合语义、 植物实例和叶样分解问题。 我们建议建立一个单一的同生神经网络, 以同时处理这三项任务, 利用它们潜在的等级结构。 我们引入了任务特有的跳过连接, 我们的实验性评估证明这比通常计划更有益。 我们还提出了一个新的自动后处理程序, 明确解决农业领域常见的空间接近情况问题, 因为树叶相互重叠。 我们的建筑同时在农业领域共同解决这些问题。 以前的工程要么侧重于植物或叶片分解, 要么不善于处理语义分解。 结果显示, 我们的系统比最先进的方法表现优于最先进的方法, 而参数则减少, 并且以摄像框架速度运行 。