Differentiable Neural Architecture Search (DNAS) has demonstrated great success in designing state-of-the-art, efficient neural networks. However, DARTS-based DNAS's search space is small when compared to other search methods', since all candidate network layers must be explicitly instantiated in memory. To address this bottleneck, we propose a memory and computationally efficient DNAS variant: DMaskingNAS. This algorithm expands the search space by up to $10^{14}\times$ over conventional DNAS, supporting searches over spatial and channel dimensions that are otherwise prohibitively expensive: input resolution and number of filters. We propose a masking mechanism for feature map reuse, so that memory and computational costs stay nearly constant as the search space expands. Furthermore, we employ effective shape propagation to maximize per-FLOP or per-parameter accuracy. The searched FBNetV2s yield state-of-the-art performance when compared with all previous architectures. With up to 421$\times$ less search cost, DMaskingNAS finds models with 0.9% higher accuracy, 15% fewer FLOPs than MobileNetV3-Small; and with similar accuracy but 20% fewer FLOPs than Efficient-B0. Furthermore, our FBNetV2 outperforms MobileNetV3 by 2.6% in accuracy, with equivalent model size. FBNetV2 models are open-sourced at https://github.com/facebookresearch/mobile-vision.
翻译:可区别的神经结构搜索(DNAS)在设计最先进的高效神经网络方面表现出了巨大的成功。然而,DARSS基于DARSS的DNAS搜索空间与其他搜索方法相比很小,因为所有候选网络层都必须在记忆中明确即时化。为了解决这一瓶颈问题,我们提出一个记忆和计算高效的DNAS变式:DmaaskingNAS。这一算法将搜索空间扩大到超过常规DNAS的10 ⁇ 14美元,支持对空间和频道层面的搜索,而这些空间和频道的搜索成本却非常昂贵:输入分辨率和过滤器的数量。我们建议为地貌地图再利用建立一个掩蔽机制,这样,随着搜索空间的扩展,记忆和计算成本将几乎保持不变。此外,我们采用有效的形状传播来最大限度地增加每个氟化烃或每个参数的准确性。搜索的FBNetV2, 与以往所有模型相比,搜索成本高达421美元,MDASKNAS发现模型的精确度更高0.9%,而FLOP-OFL3的精确度要低15%。