In this paper, we disprove the long-standing conjecture that any complete geometric graph on $2n$ vertices can be partitioned into $n$ plane spanning trees. Our construction is based on so-called bumpy wheel sets. We fully characterize which bumpy wheels can and in particular which \emph{cannot} be partitioned into plane spanning trees (or even into arbitrary plane \emph{subgraphs}), including a complete description of all possible partitions (into plane spanning trees). Furthermore, we show a sufficient condition for \emph{generalized wheels} to not admit a partition into plane spanning trees, and give a complete characterization when they admit a partition into plane spanning double stars.


翻译:在本文中,我们否定了长期的推测,即$2n美元脊椎上的任何完整的几何图都可以分割成一美元平面横贯树木。 我们的建筑建筑基于所谓的摇摇轮轮。 我们充分确定了哪台摇晃轮可以分割成横贯树木的平面(或者甚至任意划成平面 emph{cannot} ), 包括完整描述所有可能的分隔区(比如横贯树木的平面 ) 。 此外,我们展示了足够条件,使\emph{cannot} 无法进入横贯树木的平面分割区,当它们承认一个分割成横跨双星的平面时,我们给出了完整的特征描述。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
42+阅读 · 2021年4月2日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
10+阅读 · 2018年5月2日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月21日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
10+阅读 · 2018年5月2日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
相关论文
Top
微信扫码咨询专知VIP会员