We propose Adaptive Deep Kernel Fitting with Implicit Function Theorem (ADKF-IFT), a novel framework for learning deep kernels by interpolating between meta-learning and conventional deep kernel learning. Our approach employs a bilevel optimization objective where we meta-learn generally useful feature representations across tasks, in the sense that task-specific Gaussian process models estimated on top of such features achieve the lowest possible predictive loss on average. We solve the resulting nested optimization problem using the implicit function theorem (IFT). We show that our ADKF-IFT framework contains Deep Kernel Learning (DKL) and Deep Kernel Transfer (DKT) as special cases. Although ADKF-IFT is a completely general method, we argue that it is especially well-suited for drug discovery problems and demonstrate that it significantly outperforms previous SOTA methods on a variety of real-world few-shot molecular property prediction tasks and out-of-domain molecular property prediction and optimization tasks.
翻译:我们建议采用隐性函数理论(ADKF-IFT)来适应深层内核,这是一个通过将元学习与传统的深层内核学习相互交错来学习深层内核的新框架。 我们的方法采用双级优化目标,即我们将一般有用的特质体现为不同任务,也就是说,在这类特性之上估计任务特定的高斯进程模型平均达到最低可能的预测损失。我们用隐性函数理论(IFT)来解决由此产生的嵌套优化问题。我们显示,我们的ADKF-IFT框架包含深心内核学习(DKL)和深心内核转移(DKT)作为特殊案例。 尽管ADKF-IFT是一种完全通用的方法,但我们认为它特别适合毒品发现问题,并表明它大大超过以前在各种现实世界微粒分子特性预测任务和外部分子特性预测和优化任务方面的SOTA方法。