Domain knowledge is useful to improve the generalization performance of learning machines. Sign constraints are a handy representation to combine domain knowledge with learning machine. In this paper, we consider constraining the signs of the weight coefficients in learning the linear support vector machine, and develop two optimization algorithms for minimizing the empirical risk under the sign constraints. One of the two algorithms is based on the projected gradient method, in which each iteration of the projected gradient method takes $O(nd)$ computational cost and the sublinear convergence of the objective error is guaranteed. The second algorithm is based on the Frank-Wolfe method that also converges sublinearly and possesses a clear termination criterion. We show that each iteration of the Frank-Wolfe also requires $O(nd)$ cost. Furthermore, we derive the explicit expression for the minimal iteration number to ensure an $\epsilon$-accurate solution by analyzing the curvature of the objective function. Finally, we empirically demonstrate that the sign constraints are a promising technique when similarities to the training examples compose the feature vector.
翻译:域知识有助于提高学习机器的通用性能。 标志限制是一种将域知识与学习机器相结合的简单表示。 在本文中, 我们考虑限制学习线性支持矢量机的重量系数迹象, 并开发两种优化算法, 以尽量减少标志限制下的经验风险。 两种算法中的一种以预测梯度方法为基础, 预测梯度方法的每次迭代都使用O(n)美元计算成本, 并且保证客观错误的亚线性趋同。 第二种算法基于弗兰克- 沃费方法, 该方法也同时将亚线性趋同, 并具有明确的终止标准。 我们显示, 弗兰克- 沃菲的每一次迭代也要求 美元 (nd) 成本 。 此外, 我们用最小的迭代号来明确表达, 通过分析目标函数的曲线来确保 $\ epslon$- acurate 解决方案。 最后, 我们从经验上证明, 符号限制是一种有希望的方法, 当与配置特性矢量的培训示例相似时, 。