Teaching robots how to apply forces according to our preferences is still an open challenge that has to be tackled from multiple engineering perspectives. This paper studies how to learn variable impedance policies where both the Cartesian stiffness and the attractor can be learned from human demonstrations and corrections with a user-friendly interface. The presented framework, named ILoSA, uses Gaussian Processes for policy learning, identifying regions of uncertainty and allowing interactive corrections, stiffness modulation and active disturbance rejection. The experimental evaluation of the framework is carried out on a Franka-Emika Panda in three separate cases with unique force interaction properties: 1) pulling a plug wherein a sudden force discontinuity occurs upon successful removal of the plug, 2) pushing a box where a sustained force is required to keep the robot in motion, and 3) wiping a whiteboard in which the force is applied perpendicular to the direction of movement.
翻译:教授机器人如何按照我们的偏好运用力量,这仍然是一项公开的挑战,需要从多种工程角度来应对。本文研究如何学习可变阻力政策,这样可以从人类的演示和校正中学习笛卡尔的僵硬性和吸引器,并使用方便用户的界面。 介绍的框架名为ILOSA, 使用高山进程进行政策学习, 确定不确定区域, 允许互动校正、 僵硬调制和主动干扰拒绝。 框架的实验性评估是在弗朗卡- Emika Panda 上进行的, 有三个不同的例子, 具有独特的武力互动性:(1) 拔出一个插头, 插头成功清除时突然出现不连续的阻力;(2) 推动一个盒子, 需要持续的力量来保持机器人运动;(3) 擦动一个与运动方向密切相关的白板。